| |
精密和超精密磨削 | |
为节省流量,手机版未显示文章中的图片,请点击此处浏览网页版 | |
1.精密和超精密磨削的技术关键
在工具和模具制造中,磨削是保证产品的精度和质量的最后一道工序。技术关键除磨床本身外、磨削工艺也起决定性的作用。在磨削脆性材料时,由于材料本身的物理特性,切屑形成多为脆性断裂,磨剂后的表面比较粗糙。在某些应用场合如光学元件,这样的粗糙表面必须进行抛光,它虽能改善工件的表面粗糙度,但由于很难控制形状精度,抛光后经常会降低。为了解决这一矛盾,在80年代末日本和欧美的众多公司和研究机构相继推回了两种新的磨削工艺:塑性磨削(Ductile Grinding)和镜面磨削(Mirror Grinding)。
(1)塑性磨削 它主要是针对脆性材料而言,其命名来源出自该种工艺的切屑形成机理,即磨削脆性材料时,切屑形成与塑性材料相似,切屑通过剪切的形式被磨粒从基体上切除下来。所以这种磨削方式有时也被称为剪切磨削(Shere Mode Grindins)。由此磨削后的表面没有微裂级形成,也没有脆必剥落时的元规则的凹凸不平,表面呈有规则的纹理。
塑性磨削的机理至今不十分清楚在切屑形成由脆断向逆性剪切转变为塑断,这一切削深度被称为临界切削深度,它与工件材料特性和磨粒的几何形状有关。一般来说,临界切削深度在100μm以下,因而这种磨削方法也被称为纳米磨削(Nanogrinding)。根据这一理论,有些人提出了一种观点,即塑性磨削要靠特殊磨床来实现。这种特殊磨床必须满足如下要求:
l)极高的定位精度和运动精度。以免因磨粒的切削深度超过100μm时,导致转变为脆性磨削。
2)极高的刚性。因为塑性磨削的切削力远超过脆性磨削的水平,机床刚性太低,会因切削力引起的变形而破坏塑性切屑形成的条件。
对形成塑性磨削的另一种观点认为切削深度不是唯一的因素,只有磨削温度才是切屑由脆性向塑性转变的关键。从理论上讲,当磨粒与工件的接触点的温度高到一定程度时,工件材料的局部物理特性会发生变化,导致了切屑形成机理的变化。作者从实践中找到了支持这种观点的许多证据:比如在一台已经服役20多年的精度和刚度不高的平面磨床上磨削SiC陶瓷,用40O0#的金刚石砂轮。工件表面粗糙度小于Rq5μm,表面上看不到脆断的痕迹。另外德国亚琛工业大学的Konig教授作了如下试验,在普通的车床上,用激光局部加热一个SiN陶瓷试件,即能顺利地进行车削。这些实验均间接地说明温度对切屑形成机理有决定性的影响。
(2)镜面磨削 顾名思义,它关心的不是切屑形成的机理而是磨削后的工件表面的特性。当磨削后的工件表面反射光的能力达到一定程度时,该磨削过程被称为镜面磨削。镜面磨削的工件材料不局限于脆性材料,它也包括金属材料如钢、铝和钼等。为了能实现镜面磨削,日本东京大学理化研究所的Nakagawa和Ohmori教授发明了电解在线修整磨削法ELID(Electrolytic In-Process Dressing)。
镜面磨削的基本出发点是:要达到境面,必须使用尽可能小的磨粒粒度,比如说粒度2μm乃至0.2μm。在ELID发明之前,微粒度砂轮在工业上应用很少,原因是微粒度砂轮极易堵塞,砂轮必须经常进行修整,修整砂轮的辅助时间往往超过了磨削的工作时间。ELID首次解决了仅用微粒度砂轮时,修整与磨削在时间上的矛盾,从而为微粒度砂轮的工业应用创造条件。
(图片) (图片) (图片) | |
电脑版 | 客户端 | 关于我们 |
佳工机电网 - 机电行业首选网站 |