在控制系统中,既要完成高速闭环控制,又要实现大量数据的高速采集和存储,是比较困难的事,因为能完成实时控制的软件,其大量数据处理的能力就弱, 而在LabVIEW RT 系统中通过软件总体结构的合理布局,利用一个实时控制器,可以完成多个实时控制任务,同时实现了对多通道数据采集、存储,降低了成本又节省了开发时间。
1 实验机的物理构成
多任务实时控制系统应用在MMS100 改进后的多功能材料实验机中,这种实验机是一种快速模拟钢厂热连轧过程的实验设备,它可以用来研究钢材等有色金属在不同的升温速率和变形量的情况下,其微观组织结构及组织性能的变化规律,被广泛地应用于冶金、航天、军事等领域的新材料开发和研究。
1.1 实验机的工作原理
本实验机的工作原理是将试样安装在两个夹头之间,以上万安培的电流通过试样,使其快速被加热,同时在两个夹头中通有循环冷却水,当电流增大产生的热量大于水冷带走的热量时,试样的温度就升高,反之试样的温度就降低,当二者相等时试样的温度保持不变,从而达到控温的目的。根据不同的实验要求,当试样被加热到规定的温度时,通过控制液压缸,推动锤头高速打击(压缩实验)或拉伸(拉伸实验)或扭转(扭转实验),使试样发生形变,同时要记录并存储试样在发生形变过程中的所有参数,如液压缸位移、横向位移、纵向位移、力、扭矩等,实验结束后,由host PC(主机)对所记录的数据进行绘制工艺要求的曲线,如位移-力曲线,位移-应力曲线,应力-应变曲线等。有些实验要求在真空状态下进行,防止试样表面被氧化,要求将试样加热室抽成真空,根据需要还可以充保护气(惰性气体)。淬火实验要求试样温度达到某一值时进行淬水、淬气、气水混合等以满足不同的工艺需要。
1.2 控制系统的构成
根据工艺对控制系统动态响应速度、精度等技术指标的特殊要求来确定控制系统的硬件结构,由于本设备包括结构复杂的机械运动系统、液压系统、真空系统、加热系统、水冷却系统、淬火系统、气动控制系统等多个单元,为了提高控制精度和速度,而将逻辑控制从PXI 系统中分离出去,由PLC 控制,二者以通讯方式交换信息。所有的实时控制任务、数据采集及数据存储由PXI-8156B 完成,hostPC 机主要完成编程器、人机交互界面、数据分析及处理等功能,该控制系统结构如图1 示。 (图片)
控制系统硬件结构示意图 2 控制系统的实时任务
2.1 加热控制系统
试样的加热采用直接电阻加热的方法,其特点是低电压、大电流;快速响应加热;瞬间断电采集数据;热膨胀测量与补偿;10ms 控制周期。具体方法是通过在变压器原侧调节可控硅的触发角,来改变变压器副侧试样两端电压,从而改变流过试样中电流大小,实现控温的目的。这种加热方法优点是可以降低试样内部的热梯度,防止集肤效应,获得更好的等温区。其缺点是由于热电偶是直接焊在试样上的,当加热时试样内流过上万安培的电流,周围将产生强大的磁场,严重地影响温度测量的精度,但NI 公司的软件和硬件提供了触发采集的功能,可以很好地解决这个问题。方法是通过一个小的同步变压器获得变压器原侧的电压相位,根据这个电压信号的峰值可以计算出触发采集电压与触发角的关系,通过限制触发电压值和适当选择触发采集电压,就可以使可控硅触发角留出20 度~30 度的断电时间,实现断电采集。通过一个整流桥可以将正弦交流电负半周也变成正半周,使每个控制周期控制两次,控制周期为10ms。
2.2 位移控制系统
主液压缸的控制是通过控制高速伺服阀,完成控制液压缸推动锤头移动。工艺要求控制周期越短越好,利用PFI7针完成PID输入触发输出循环控制,控制周期为2ms。在高速伺服阀放大器板上有一个硬件PID 控制环,它是将高速伺服阀的阀芯位置作为反馈信号,这个闭环作为内环,而软件PID 将位移传感器的实际位置作为反馈信号,这个闭环作为外环,这样大大提高了液压缸的控制精度。
2.3 扭转控制系统
扭转控制的作用是扭转实验时完成高速扭转闭环控制,另外在多道次压缩或拉伸实验时完成试样第二道次以后的变形量定位控制的功能。控制方法是利用PXI6052E的高速计数器1 测量编码器的脉冲,通过控制高速伺服阀控制液压马达,完成扭转控制。扭转实验适应超级钢、军用钢等高性能钢种开发研究的需要,将剪切变形与压缩变形复合,从而大幅度提高变形程度和变形速率,实现组合连续大变形的学术思想。
2.4 流量控制系统
淬火的方式分为淬水、淬气、气水混合等方式,在淬火时不同的实验工艺,要求对淬火的水流量进行相应的控制,以满足实验工艺。控制方法是将流量计的检测信号作为反馈,控制电磁球阀实现闭环控制。
3 硬件连接问题
3.1 接地问题
PXI总线的机箱,其机壳地与AIGND和DGND是相通的,这一点与其他控制系统中有所区别。为了减少控制系统的干扰,系统接地非常重要,为此将数据线的屏蔽层单独接地,将二次仪表的电源地与机壳地一起单独接地。另外二次仪表电源的输入端通过一个UPS 使其与电网进行隔离,进一步减小了系统干扰。
3.2 E系列数据采集卡的计数器滤波问题
E系列数据采集卡上的24 位计数器的抗干扰能力不是很强,为了弥补这一缺点,在NI 网站的an084QuadratureEncoders中详细地阐述了利用LS7084芯片和电阻、电容构成一个滤波电路,消除由于noise and jitter 等造成的干扰,此电路还可以对编码器的输出脉冲进行4 分频,从而大大地提高了测量精度。
4 控制系统的软件
软件部分分为三个部分,即上位机的人机界面软件、实时控制软件和逻辑控制软件。上位机软件, 是在Windows2000 平台下,利用LabVIEW 软件,实时控制软件是在Windows2000 环境下LabVIEW RT 编程,然后下载到嵌入式控制器中,逻辑控制软件是Siemens 公司的Step_MicroWin 软件编程。
4.1 各部分软件的功能
上位机软件的功能是工艺参数输入、数据显示、数据的存储及处理,故障报警显示等;实时控制软件的功能是完成温度、位移、扭转、流量等的实时闭环控制;逻辑控制软件的功能是完成控制柜的按钮、指示灯,液压站、变压器等的接触器,气路、油路和水路的电磁阀、电节点、报警器等。
4.2 软件的结构
上位机和实时控制机软件的总体结构均选用了LabVIEW 提供的状态机结构,因为在程序中诸多任务都是有一定顺序的,对于解决有顺序控制问题来说,状态机结构是最有效的方法, 它是由While Loop 内部的一个Case结构和位移寄存器中所携带的Case 选择器组成,这种Case 结构的每个框架都可以向下一个迭带中的其他框架传输控制或直接终止While Loop,这就允许用户执行任意数量的执行操作,每一个操作都可以调用一个子程序,使整个程序的运行效率非常高。
实时控制软件分为三个部分,即通讯,多实时任务,瞬时记录。其中几个实时任务之间的结构While Loop加sequence 结构,根据每个任务的控制周期的不同,利用i取余数来确定其执行的周期大小。利用RTFIFO 将变形过程的数据记录下来,当变形结束时,即CPU 时间宽裕时,将数据写入磁盘。控制参数的输入是通过通讯的方式由HostPC 传到实时控制器的,实验过程采集的实时数据也是通过通讯从控制器传到HostPC 的,只是传输的速率要低一些。
5 系统性能评价
由于采用了PXI实时控制器和RT 系列的软件,使多个控制任务得到了很好的协调和运行,控制精度和速度完全满足设计要求,温度控制的动态最大偏差为±1.5℃,静态最大偏差为±0.2℃,位移测量精度1 微米。使得实验机的总体性能达到了国外的同类产品且功能增多,其价格为国外产品的四分之一到三分之一。(图片)
利用状态机结的参数输入子VI (图片)
试样被加热到800℃,恒温控制时的图片 (图片)
实验机外形 (图片)
变形设定曲线计算核心部分子VI (图片)
将数据从RTFIFO 写入文件的SubVI 结构示意图 (图片)
温度示意图 其中绿色的曲线为温度设定曲线,红色曲线为实际温度曲线。此时的控制周期为10毫秒。在420℃ 左右和在470℃左右时式样的内部结构的原因而产生20℃左右的温升高,持续时间为8 毫秒左右单道次变形实验时设定参数输入的人机界面图包括式样本身的参数,温度控制参数和变形过程参数。(图片)
单道次变形实验时设定参数输入的人机界面图
(包括式样本身的参数,温度控制参数和变形过程参数) 6 结束语
实验机的控制系统对控制精度和速度要求较高,利用通讯,将实时任务和非实时任务分开,采用实时控制系统和合理的软件结构,使多个控制任务的精度和响应速度都多达到了设计要求,以前此类设备都是从美国的一家公司进口,成本较高。为了加快大型设备国产化的步伐,鼓励开发具有自主知识产权的高技术含量产品,国家科委给予此项目支持基金90 万,用于进一步研究和开发。
6/10/2005
|