| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
滤料粒度对过滤的影响 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
摘要:针对近年国内新建水厂滤池多采用粗粒径滤料、滤层加厚的趋势,本文结合试验研究与生产实际,从唯象观点与机理分析,阐述了快滤池滤料粒径的粒度对过滤性能的影响,以及由此产生的滤料厚度与滤料粒径比值(L/d)的概念,说明了L/d值是快滤池设计中保证过滤效能和水质的关键因素。
关键词:快滤池 滤料 粒径 产水量 水质
在以地表水为水源的给水净化工程中,滤池是不可缺少的最重要的处理构筑物。由于快滤池的滤速是慢滤池的几十倍到几百倍,在解决了清洗滤池的反冲洗技术后,快滤池目前已取代了慢滤池。本文所谈及的内容限于快滤池。
和欧洲的情况相比,我国给水净化工程中所用的滤池滤层较薄、粒度较细。我国设计规范有关滤料部分,单层滤料过滤只规定了石英砂,粒径范围dmin~dmax为0.5~1.2mm、层厚0.7m。
从本世纪六十年代起,法国和苏联就开展了粗滤料过滤技术研究。其后法国开发了V型滤池,通常石英砂滤料粒径范围dmin~dmax为0.9~1.35mm,也可扩至0.7~2.0mm、层厚在0.95~1.50m之间。
美国在八十年代则采用无烟煤滤料建成日处理水量216万3的洛杉矶水厂,有效粒径d(10)达1.5mm,均匀系数k(60)为1.5、层厚1.8m。由美国人设计的巴西圣保罗水厂日处理量130万3,采用石英砂滤料,有效粒径d(10)为1.7mm、均匀系数k(60)达1.5、层厚1.8m。
中国目前滤池设计也有滤料粒度加大、滤层加厚的趋势。例如九五年建成的北京第九水厂二期工程,日处理水量50万3,采用无烟煤滤料,有效粒径d10为1.10mm、均匀系数k(60)1.35、层厚1.5m。
滤料粒度的变化对滤池的过滤性能有何影响?滤料粒度和滤层厚度如何制约着滤池的过滤能力?如何从表象和微观去分析和认识?笔者谨以此文与大家共同探讨。
按唯象观点即不涉及机理,认为过滤是水中悬浮物被截留的过程,被截留的悬浮物充塞于滤料间的空隙。滤层孔隙尺度以及孔隙率的大小,在同种滤料、相同反冲洗条件下,随滤料粒度的加大而增大。即滤料粒度越粗,可容纳悬浮物的空间越大。其表现为过滤能力增强,纳污能力增加,截污量增大。同时,滤层孔隙越大,水中悬浮物越能被更深地输送至下一层滤层,在有足够保护厚度的条件下,悬浮物可以更多地被截留,使中下层滤层更好地发挥截留作用,滤池截污量增加。
下列表1是一组无烟煤滤料不同粒径过滤能力比较的试验数据。 无烟煤滤料不同粒径过滤能力比较试验
过滤周期终止时水头损失
日本学者藤田贤二通过研究导出的公式↑[1]清晰地表明了粒度、空隙度和水头损失之间的关系: H=K(LVμ/ρgψ2d2)(1-ε)2/ε3 (1) H--过滤水头损失 K--系数 汉森(Hanzen)认为,经絮凝后弱的絮体穿透深度与滤料粒径的三次方成正比,强的絮体穿透深度与滤料粒径的二次方成正比。斯坦雷(Stanley)则用下述公式[2]表述滤料粒径与穿透深度的关系: K=(hd2.46u1.56)/1 (2) K--常数 u--滤速d--有效粒径 h--水头损失 l--穿透深度 上式表明,穿透深度与滤料粒径的2.46次方成正比。 由此引发出两个问题。其一,相同厚度的滤层,在一定范围内,滤料粒径越粗,由于穿透深度越大,出水浊度将不如粒径较细的滤料。表1所示试验数据证明了这一点。 序1和序2试验中,有效粒径1.33mm的截留浊度为044NTU,而有效粒径1.10mm的截留浊度为0.46NTU,进水浊度相同而有效粒径1.33mm的滤料过滤出水浊度较有效粒径1.10mm高出0.02NTU。序3和序4的试验结果同样表明粗粒径滤料过滤出水浊度较细滤料高。 其二是,前述滤料粒径越粗滤层截污能力越强、过滤周期产水量越大的观点应是建立在满足一定出水水质(浊度)要求的前提之上的。如果一味地用出水水质做比较,在其它条件相同的情况下,粒径细的滤料出水浊度总要比粒径粗的滤料出水浊度低。这一点在实际工程中颇为重要,即为达到预期的水质要求,应尽量选用合宜的粗粒径滤料。 从严格的理论上讲,滤料所具有的对悬浮物的截留能力来自滤料所提供的表面积。慢滤池的过滤能力主要地来自滤料的筛除作用,而快滤池的过滤能力来自滤料颗粒表面的吸附作用,这是快滤池与慢滤池过滤机理最根本的不同之处。在过滤过程中滤料所提供的颗粒表面积越大,对水中悬浮物的附着力越强。为要达到一定的预期的水质要求,滤料所提供的表面积应表现为:单位面积滤层所提供的表面积必须满足某一最低量值以上的要求,其数学表达式[3]为: S=[6(1-ε)/ψ]·(L/d) (3) S--滤料表面积 ε--滤层空隙度ψ--滤料球形度 L--滤层厚度 d--滤料粒径 从上式可以清晰地看出,随着滤料粒径加大、孔隙度加大,所提供的表面积变小。滤层表面积减小的结果必然会降低过滤能力。这反映出滤料粒度加大对过滤效果带来的负作用。 同时这个式子也清楚地表明,在滤料球形度一定也即滤料种类一定的情况下,能够抵消粒度变化负面影响的只有滤层厚度、即L。这样,式中的L/d成为关键因素,它决定了滤料所能提供的表面积的大小也就决定了过滤性能。由此引伸出L/d的概念。 从技术角度讲,L/d值越大越好。而综合经济因素,工程中应以最小L/d值满足提供最低量值的滤料表面积达到预期的过滤出水水质要求。在实践中,选用优良的颗粒级配与合宜的滤层厚度正是保证过滤效果的关键。因此,L/d受到滤池设计人员的日益重视。 中国《城市供水行业2000年技术进步发展规划》提出:“为保证水质滤层深度与粒径比应大于800。”在其子课题《改善过滤效能》中指出:“运用L/Dm≥800判别式判断分析滤池滤料级配的合理性或比较其优越性。”这里的Dm为滤料的几何平均粒径。 美国《Intergrated Design of Water Treatment Facilities》一书指出:“普通单层砂滤池或双层滤料滤池L/d≥1000;1.5mm≤d≥1.0mm的单层滤料滤池L/d≥1250。”这里的d为有效粒径。 有关粒径d的取值出现了两种,一是有效粒径、一是几何平均粒径。那么,L/d中的d采用哪一种取值更为适宜? 有效粒径d(10)是Hanzen根据滤料的使用经验首先提出的,并被后人广泛应用。他发现,只要d(10)值不变,任何级配情况下滤层对水流的阻力几乎都是一样的。因而在研究过滤水头损失、穿透深度等过滤性能时采用d(10)是合理的。 但是如前所述,快滤池的过滤能力从理论上讲是由滤料颗粒表面的吸附作用决定的,而吸附作用的大小取决于滤料颗粒的表面积。显然,由于几何平均粒径dg是滤料颗粒表面积的科学表征,因此L/d中的d应当用几何平均粒径dg。 当所用滤料的均匀系数很小时,例如K(60)<1.5情况下,笔者认为可以用平均粒径da替代几何平均粒径dg。 笔者参与的无烟煤均质滤层过滤试验研究所用滤料的数据如表3。 无烟煤滤料均质滤层过滤试验L/d数据库
北京市第九水厂二期工程滤池生产运行测定结果
[1] 藤田贤二,《水道协会杂志》(455),2~31,1972 [2] 钟淳昌主编,净水厂设计,6过滤,P225,中国建筑工业出版社,1992 [3] JAWWA,67:535,1975 [4] JAWWA,64:55,1972 3/21/2005 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
电脑版 | 客户端 | 关于我们 |
佳工机电网 - 机电行业首选网站 |