结构系统动力分析通常采用总体结构有限元法,但该方法对于复杂大型结构进行分析存在计算规模大,计算时间长,所用的磁盘空间、计算机系统太庞大,如飞机、车辆、船舶、高层建筑等整体结构。特别是用有限元法进行较高频率振动分析时,要求结构被划分成非常多的单元数以便获得详细的位移和应力特性。这时结构模型的节点自由度可能达到几十万甚至上百万,直接求解如此庞大的模型是很困难。即使能够分析,也要耗费大量机时,效率极低。
模态综合法(Component Mode Synthesis)就是在这样的背景下发展起来的一种缩减自由度方法。它可以将大模型化小,先进行各个子结构的模态分析,然后进行模态综合。由于仅采用了各个子结构的低阶模态,因而使所建立整体结构动力模型的自由度数大大降低,而且可以在不同的机器上对各子结构进行模态分析提高计算速度。
一. ANSYS模态综合法原理
模态综合法的基本思想是根据复杂结构的特点将整体结构划分成若干子结构,对各个子结构分别进行模态分析,得到其动力特性。再利用子结构间力平衡条件及位移协调条件将各子结构部分低阶模态特性综合,由此得到整体结构的动力特性。
ANSYS是一款著名的商业化大型通用有限元软件,广泛应用于航空航天、机械制造等领域,对飞机、车辆、船舶、高层建筑等大型结构的动力分析有着完整的解决方案。ANSYS的模态综合法采用固定界面和自由界面模态综合法,基本概念:
1) 固定界面模态综合法的基本思想是将各子结构与其它子结构相连接的界面自由度完全约束,求出此时子结构的低阶主模态集[ψi]。然后通过释放子结构界面自由度,分别得到子结构的刚体模态集[ψr]和约束模态集[ψc],由[ψi]、[ψr]和[ψc]组成子结构的Ritz基。
2) 自由界面模态综合法的基本思想是把子结构从整体系统中分割出来,将子结构间界面自由度上的约束全部去掉,对界面自由度的子结构进行模态分析。然后利用相邻子结构界面位移协调条件和力平衡条件将各子结构综合成一个整体。
自由界面法与固定界面法的区别在于固定界面法是将子结构界面完全约束住,利用界面约束的子结构综合形成整体系统。而自由界面法则是将子结构界面间界面约束全部去掉,以界面无约束的子结构去综合形成整体系统。
对于大部分动力分析通常采用固定界面法。自由界面法主要应用于:
对于中、高频谱分析需要得到较精确的特征值时;
相邻子结构间并不一定有直接对接关系(即不是刚性连接),但它们之间存在耦合关系。例如:转子系统中转轴和基础这两个相邻子结构在油膜轴承处存在相对位移,两个子结构借助于油膜相互作用、发生耦合关系。 (图片) 这两种方法的基本过程相同,区别在于对交界面的处理。下面对固定界面模态综合法的理论过程进行说明:
1) 整体结构系统的子结构划分
如同静力分析中子结构法,按照结构的自然特点和分析方便,将结构分成 若干子结构。各个子结构通过交界面上的节点相互联接。
2) 子结构的模态分析
a) 以节点位移为基量建立子结构的运动方程:(图片)。其中Q为外载荷向量,R为交界面上的力向量。
b) 固定界面主模态,在完全固定交界面上的位移条件下,求子结构系统的固有频率,即求解以下特征值问题:(图片)。
c) 约束模态,即在界面完全固定条件下依次释放界面上的每个自由度,并令它取单位值所得到的静态位移。
3) 子结构模态综合
集成各子结构的运动方程得到整个结构系统的运动方程并求解。各个子结构界面上的位移实际上是子结构之间保证满足位移协调条件的公共坐标,利用它将各个子结构的运动方程集合成整个结构系统的运动方程。
二. ANSYS模态综合法基本过程
模态综合法是子结构在动力分析中的应用,其基本过程包括三方面:生成过程、使用过程、扩展过程。ANSYS提供了友好的CMS向导(Preprocessor>Modeling>CMS),可以方便的定义超单元和交界面,而且可以对模态综合法分析生成的文件进行管理和组织。
1. 创建超单元
选择CMS求解方法(CMSOPT):固定界面法或自由界面法。同时确定提取模态数、频率范围等。对于自由界面法还要确定刚体模态。
命名超单元矩阵文件(SEOPT)。
对于考虑阻尼时,输入集中质量矩阵公式。
定义主自由度:在超单元的交界面定义主自由度。
保持数据库:这是必须做的,因为在扩展模态时需要有相同的数据库文件。
求解生成超单元矩阵文件。(图片)
图1 创建超单元过程 2. CMS的使用和扩展过程
CMS的使用和扩展部分与子结构基本相同,但是CMS只支持模态分析。在子结构分析中,需要对整体结构中的每一个子结构进行生成和扩展,然后将各个子结构集合成整个模型。
在自由界面模态综合法中,使用MODOPT扩展模态数,应小于每个超单元求解的模态数。若需要扩展更多的模态,需要CMS的超单元重新求解更多的阶数。
3. 结果后处理
在结果后处理器(/POST1)中可以显示整个模型的模态变形图,列出求解的频率。首先使用CMSFILE命令把CMS的超单元结果文件读入结果后处理器,该命令可以只读入部分结果。通过SET命令来设置所要显示的模态阶数,然后用PLNSOL命令图形显示模态振型云图。
三. ANSYS模态综合法算例
1. 例1 用总体有限元法、固定界面模态综合法分别计算音叉的频率,进行比较。音叉的几何尺寸如图2所示,把结构划分成三个超单元如图3所示,划分的固定界面如图4所示。材料属性:弹性模量:1.90×1011 N/m2,泊松比:0.3,密度:7700 kg/m3。(图片)
图2音叉的几何尺寸 图3音叉的超单元划分 图4超单元的固定界面 图5 第一阶X方向位移图 (图片) 2. 例2 图6所示为一双层框架由16根长度0.3m,直径0.008m,结构材料的弹性模量弹性模量:2.1×1011 N/m2泊松比:0.3,密度:7700 kg/m3。(图片) (图片)
图6 双层框架结构图和第一阶振型 (图片)
图7 模态综合法计算飞机的模态 3. 模态综合法的应用:
图7的飞机模型采用模态综合法来计算结构固有频率。首先是将整机结构分成多个子结构,机翼部分被分成三个子结构,机身分成三个子结构,尾翼单独作为一个子结构。然后分别对每个子结构进行求解,将各个子结构集合成整个结构系统。求解方法采用固定界面模态综合法。
四. 结论
本文介绍了ANSYS模态综合法的理论和基本过程。然后对实体平面结构和框架结构都采用总体有限元方法和模态综合法分别进行计算。可以看出采用模态综合法来计算结构的模态可以达到较高的计算精度。相对于总体有限元分析,计算大型复杂结构,模态综合法具有很多优点:
1) 基于子结构技术,可以计算超大模型,计算精度高;
2) 可以节省大量的计算时间和计算机资源,提高效率;
3) 可以灵活修改大系统的子系统设计。修改了子系统的结构后,只需要计算修改的子系统,然后重新集合各个子系统。而无需对整体结构重新全部计算,减少计算时间。
因此,对于复杂大型结构,如飞机、车辆、船舶、高层建筑等结构,采用ANSYS模态综合法来对结构进行模态分析,可以在精度和计算速度上得到较好的解决方案。
3/1/2005
|