在线工博会

基于HyperWorks的某通风盘式制动器热-结构分析
朱楚才 史建鹏 郭军朝
为节省流量,手机版未显示文章中的图片,请点击此处浏览网页版
1 概述
制动性能是汽车的一项极其重要的性能,而制动器则是其执行部件。乘用车的盘式制动器是一种摩擦制动器,它利用两个运动表面相互接触时所产生的摩擦阻力,短时内将汽车运动所产生的动能和势能转化为热能,从而达到使汽车减速或停止运动的目的。
了解制动盘制动时的温度场分布,有助于制动盘结构的优化设计与改进。同时,受制动盘的散热能力的影响,制动时产生的热能并不能在瞬间全部散出,制动盘内会有热能聚集并产生温升,从而在盘体内产生热应力,热应力是影响制动盘的使用寿命的重要因素。详细了解制动过程中制动盘内的温度场分布状态,及热应力的分布情况,对制动盘结构的合理设计具有重要的意义。
2 传热模型的建立
2.1 传热分析有限元法基本原理
热传导分析可以在热载荷下求解未知的温度和热流通量,温度是体现物体热能的量,而热流通量表示热能的流量。物体分子间的热能交换称为热传导,物体和周围流体间的热能交换称为热对流,热载荷一般由流进或流出物体的能量流来定义。
在线性静态分析中,材料热物性如热传导率、对流换热系数,都是线性的,关注的重点是最后平衡状态的温度和热流分布。基本的有限元方程式如下:
([Kc]+[H]){T} ={p} (1)
其中,[Kc]为热传导率矩阵,[H]为边界自然对流矩阵,{T}为未知的节点温度,{p}为热载荷矢量。通过这个系统的线性方程来求解节点的温度{T}。热载荷矢量可以表示为:
{p}={PB}+{PH}+{PQ} (2)
其中,{PB}为通过边界定义卡片QBDY1设置的热流通量所定义的能量,{PH}为通过对流换热系数定义卡片CONV设置的边界热对流矢量,{PQ}为通过内部热能生成定义卡片QVOL设置的能量矢量。
方程式(1)左侧的矩阵是未知的,除非温度边界已知。通过采用可以提高计算效率的稀疏矩阵、对称高斯消元法,这个平衡方程式可同时计算未知的温度。一旦单元的节点温度被求解,则温度梯度{▽T}可通过单元的形函数计算获得。单元热流通量可通过下式计算:
{f} = [k]{▽T} (3)
其中,[k]为材料的热传导率。
热载荷和边界在输入面板的体积载荷数据卡片中定义,在工况定义中,它们需要通过SPC或MPC和LOAD卡片进行引用。
2.2 耦合的热-结构分析
每个热传导工况定义有一组温度信息,在结构分析工况中,可以通过定义TEMP(LOAD)卡片引用这些信息,来完成热-结构耦合分析。结构强度分析中的温度信息的ID和热传导分析中的ID是默认一致的,它也可以通过TSTRU卡片来修改。如果温度信息集合ID和体积载荷数据中温度信息集合ID相同,那么热传导分析中的温度信息将覆盖体积载荷数据中的温度信息。
耦合的热-结构分析过程如下:先执行热传导分析以获取结构的温度场,这个温度场将作为结构分析的载荷的一部分。通常采用简化的有限元网格,同时用于热分析和结构分析。静态结构分析的有限元控制方程如下:
[K]{D}={f}+{fT} (4)
其中,[K]为全局刚度矩阵,{D}为未知的位移矢量,{fT}为温度载荷,{f}为结构载荷如集中力、压强等。位移矢量{D}通过线性求解器进行求解。
热-结构分析中的耦合是顺序的,热分析影响后续的结构分析,而结构分析通常对热分析没有影响。
3 有限元建模
3.1 通风盘式制动器模型
某型轿车前通风盘式制动器包含46个通风槽,每一周期角为7.826°。为了简化计算,截取一个含通风槽的对称单体进行分析,结构如图1所示。模型的前处理工作在HyperMesh中完成。

(图片)

图1 通风盘式制动盘片体简图

模型整体物理参数如表1所示,由已知物理参数推导出热流密度等物理量。

(图片)

轮辋材料为铝合金,关节头材料为钢,制动盘材料为铸铁,部分材料的热物性参数如表2所示。

(图片)

3.2 边界条件
传热分析边界条件如图2所示,热流从制动盘面的摩擦接触面部分(内、外两个面)进入制动盘。在制动盘的相关表面,存在热对流、热辐射等散热边界条件。假设制动盘面为理想平面,周期对称截面处为绝热边界。所有零件的初始温度为常数,20℃。

(图片)

热应力分析边界条件如图3所示,定义柱形局部坐标系,约束轮辋、关节头内径节点的1、3自由度,约束制动盘对称截面所有节点的2自由度,将热传导步骤产生的温度场作为温度载荷输入。
3.3 工况设置及参数确定
工况设置为:初速为120km/h条件下,制动至停车,然后加速至100km/h并保持该速度进行制动器的冷却散热。制动盘先经过制动过程温度升高,后在较高车速下散热降温。根据推导计算,制动过程时间长度为4.1s,散热冷却过程时长定义为60s。
3.4 计算结果
后处理工作在HyperView、HyperGraph中完成,如图4~7所示。在该制动工况下,制动结束时刻的最高温度约为242.8℃,经过散热冷却过程后,最高温度降为123.5℃。如图5所示,由于制动时间短,受热流在制动盘内部扩散速度的影响,制动结束时,制动盘内部温度低于制动盘表面温度。如图6所示,经过散热过程的热传导,制动盘表面和内部的温度基本趋于一致。

(图片)

(图片)

如图7所示,该通风盘式制动盘制动过程中的最高温度并非发生在制动结束时刻,而是在制动结束前的某一时刻。如制动过程中节点15978温度随时间变化曲线图所示,该温度约为271.4℃,节点15978位于制动盘内侧面。
如图8~11所示,随着温度的降低,热应力也逐渐降低。制动结束时刻,最大应力约为129.3MPa,经过散热冷却过程后最大应力降为约70.9MPa。在制动盘制动部位与固定部位间的连接部位处,有明显的应力集中现象,如图8、图9所示,建议适当调整该部位的过渡圆角尺寸。

(图片)

如图11所示,最大应力发生在制动过程的t=1.5s时刻,最大应力约为177.9MPa,该最大应力发生在制动盘的外侧面。最大应力低于制动盘材料铸铁的许用应力235MPa。
4 结论
通过对汽车以120km/h初始速度制动工况的制动盘温度场和应力场的分析,促进了制动盘结构设计的改进和优化,为制动器的设计和制造提供了参考。 12/29/2013


电脑版 客户端 关于我们
佳工机电网 - 机电行业首选网站