| |
输出功率为21.5 W的单端抽运Nd:YVO4/LBO单频激光器 | |
郑耀辉 王雅君 彭堃墀 | |
为节省流量,手机版未显示文章中的图片,请点击此处浏览网页版 | |
摘要:采用中心波长为888 nm的激光二极管作为抽运源,减轻了Nd:YVO4晶体中的热效应。通过合理的谐振腔设计,扩大激光晶体处的基模尺寸和振荡光在凹面腔镜处的入射角,减轻了激光晶体内部的热效应和谐振腔像散,提高了激光器的输出功率。采用四镜环形腔选模的办法,获得稳定的高功率单频激光输出。在吸收的抽运功率为67.5 W时,实现了最高功率为21.5 W的532 nm单频激光输出,其8 h功率稳定性优于±1%,光束质量M2<1.1,光光转换效率为31.9%。
1、引言
全固态高功率单频绿光激光器可广泛应用于科学研究的各个领域,比如抽运钛宝石激光器或染料激光器,精确测量和高分辨率的激光光谱实验。然而,在高功率抽运的条件下,激光增益介质中会产生严重的热效应,这就限制了激光功率和光束质量的进一步提高。因此,目前高功率固态激光器研究的热点,主要是集中在研究激光晶体热效应特性和减轻激光晶体中的热效应上。减轻激光晶体热效应的方法包括采用复合增益介质,低掺杂晶体,双端抽运方式或者直接抽运的方式。
目前已有多种方法能使激光器达到单纵模运转,例如用扭转模腔、短腔谐振、标准具选模及双折射滤光片选模等。但在设计高功率输出内腔倍频激光器时,大多仍是利用环形谐振腔,消除空间烧孔效应进行选模。然而,由于环形腔包含的腔内元件太多,因而增加了激光器的内腔损耗,不利于高功率单频激光器的获得。关于高功率单频激光器的研制,国外主要以美国的相干公司为代表,形成了VerdiV系列的单频绿光光源,在采用中心波长为808nm抽运源的情况下,其最高输出功率为18W;德国的ELS公司则采用薄片晶体,实现了最高输出功率为15W的单频绿光光源。在国内,山西大学光电研究所长期从事全固态单频激光器的研究工作,但是受激光晶体热效应的影响,限制了激光器输出功率的提高。
本文采用楔形Nd∶YVO4晶体作为增益介质改善了激光器的稳定性,在单端抽运情况下,使用环形谐振腔选模技术实现了高功率单频绿光激光输出。采用中心波长为888nm的激光二极管(LD)作为抽运源,减轻了激光晶体的热效应。通过合理的环形谐振腔设计,尽量保证在增益介质处获得较大的基模尺寸并且缩小谐振腔腔镜处振荡光的入射角度,减轻了增益介质处的热效应和环形腔的像散,提高单频激光的输出功率。在吸收的抽运功率为67.5W时,单频绿光的最大输出功率达到了21.5W,犕2<1.1,光光转换效率为31.9%,光斑的椭圆率优于0.16,输出绿光8h功率稳定性优于±1%。
2、实验设计与装置
图1为实验装置图,谐振腔为四镜环形腔,其中包含两个平面镜[M1:S1,减反(AR)888nm;S2,高透(HT)888nm,高反(HR)1064nm和M2:S1,HR1064nm]和两个凹面镜(M3:S1,HR1064nm和M4:S1,HR1064nm,HT532nm;S2,HT532nm。犚M3,M4=100mm)。增益介质采用α切割的楔形复合Nd∶YVO4晶体(S1,S2:AR888nm,1064nm),掺杂原子数分数为0.8%,尺寸为3mm×3mm×(3+20)mm,对888nm抽运光的吸收效率为89%。楔形晶体的设计可以起到偏振分束器的作用,在不同偏振方向模式的竞争中,保证π偏振光优先于σ偏振光在腔内起振,提高激光器的线偏振度和偏振方向的稳定性。法拉第旋转器(TGG)和半波片(HWP)组成的光学单向器使激光器实现单向运转,获得稳定的单频输出。倍频晶体采用尺寸为3mm×3mm×15mm的LBO晶体(S1,S2:AR1064nm,532nm),通过自制的控温仪(控制精度为0.01℃)将晶体温度控制为非临界相位匹配温度149℃。抽运源采用光纤耦合输出的激光二极管(LIMOF400DL888EX1458),中心波长为888nm,最大输出功率为90W,光纤芯径为400μm,数值孔径荦犃为0.22。激光二极管输出的激光光束经传输效率为96%的望远系统整形后聚焦于Nd∶YVO4晶体内。 (图片) (图片) (图片) (图片) (图片) | |
电脑版 | 客户端 | 关于我们 |
佳工机电网 - 机电行业首选网站 |