| |
活塞环用精密型材轧制成型显式动力学有限元仿真 | |
为节省流量,手机版未显示文章中的图片,请点击此处浏览网页版 | |
摘要:本文利用大型通用显式动力学有限元分析软件ANSYS/LS-DYNA对活塞环用精密型材的轧制过程进行了有限元仿真,详细介绍了有限元模型的建立、材料模型和单元类型的选择以及网格的划分,得到了各道次轧制金属的流动规律,对轧件的变形及应力场的分布进行了深入分析,为成型轧辊的设计以及优化生产工艺提供了参考。
1 前言
活塞环是发动机的关键零件之一,被喻为发动机的心脏;同时也是易损零件,更换频繁,我国每年制造的活塞环达数亿片之多。活塞环尺寸小且尺寸精度与表面粗糙度要求非常高,长期以来以铸铁为原材料采用传统方法加工生产,需要通过车、铣、磨等二十多道工序才能最终成型,生产成本非常高。随着精密成型技术的发展,发达国家采用冷态成型轧制方法生产出了符合活塞环截面形状及尺寸精度要求的精密型材,再经数控成型机直接将精密型材绕成特定形状的开口椭圆,从而将活塞环一次成型,将以往的二十多道工序缩为了几道工序,既降低了加工成本又提高了产品性能。然而,此类精密型材的加工制造在国内尚属空白,尽管国外产品价格高昂,每年仍需从国外大量进口以满足生产需要。因此精密型材的国产化具有十分重要的意义。
冷态成型轧制过程中,材料的塑性变形规律,轧辊和轧件之间的摩擦现象,材料微观组织的变化,轧制过程压下率、轧辊直径、轧制速度等因素的影响等等,这些都是非常复杂的问题。研究轧制过程的金属变形规律,通过实验研究可以最大程度地接近生产实际,为现场生产提供准确的参考数据。但是实验研究需要实验前的准备、现场实验、实验结果处理等大量工作,周期较长。而且,由于实验的偶然性,往往一次实验很难解决需要研究的所有问题,同时失败的机率也非常大。实验一旦失败,将会造成大量的人力、物力的浪费。同时对于精密型材的轧制涉及到金属的流动、应力场等分布量的定量计算,传统的实验手段很难处理这类问题。显式动力学有限元方法在轧制领域的成功应用,弥补了传统研究方法的不足,为深入研究精密型材轧制过程中的诸多问题提供了一种高效而又节约的方法。本文利用显式动力学有限元技术对生产现场的活塞环用精密型材的轧制过程进行三维数值仿真,为设计与优化轧机、优化轧制工艺参数提供较准确的参考数据。
2 模型的建立
为了提高仿真的可信度与准确度,几何模型的尺寸均采用生产现场设备的尺寸,并对轧制过程作如下合理假设:所有轧辊直径相等,转速相同,且均为主动辊;轧件的机械性质均匀;轧辊以恒定角速度转动,轧件以接近或等于轧辊圆周线速度的速度匀速向辊缝运动,直至被轧辊咬入进入辊缝后,靠轧辊和轧件之间的摩擦力完成轧制过程。
轧件毛坯是直径为φ2.7mm的圆钢丝,精密型材的截面为矩形,高1.5mm、宽3.5mm,因此将轧制过程安排为两道次连轧,即先在两辊轧机上初轧,基本实现精密型材的厚度要求,然后在错位四辊轧机上精轧,从而得到成型产品。
轧件的材料为50CrVA,其弹性模量E=206GPa,切线模量Etan=90MPa,屈服极限σs=1127MPa,密度ρ=7850kg/m3,泊松比μ=0.3。轧辊的材料为9CrSi,其弹性模量E=206GPa,密度ρ=7850kg/m3,泊松比μ=0.3。轧辊外径D=120mm。
采用大型通用有限元分析软件ANSYS/LS-DYNA对轧制过程进行有限元建模和求解分析。在单元类型的选择上,轧件、轧辊均选择SOLID164显式单元。在材料模型的选择上,由于在冷轧状态下轧辊变形很小可视为刚性辊,因此轧辊选用刚体Rigid 材料模型。轧件选用经典双线性随动硬化Bilinear Kinematic(BKIN)材料模型。选用对称罚函数法接触算法,接触类型为Automatic Surface to Surface Contact,静摩擦系数μs=0.482,动摩擦系数μd=0.346,粘性摩擦应力VDC=650.67MPa,接触阻尼系数VDC=20,分别定义轧件和各个轧辊之间的接触。
由于轧辊视为刚性辊,为了减少单元数量,缩短计算时间,在建模时一般将实体轧辊用辊面来代替。为了尽量与实际生产相一致且单元数目不至于过多,本文采用厚度、宽度均为5mm的圆环体来模拟实际轧辊。轧件用直径为2.7mm长度为5mm的圆柱体模拟。两辊轧和错位四辊轧连轧的几何模型如图1所示,(a)为两辊轧和错位四辊轧连轧的整体模型图,(b)为错位四辊轧机轧辊布置图,(c)为轧件模型图。 (图片) (图片) (图片) (图片) | |
电脑版 | 客户端 | 关于我们 |
佳工机电网 - 机电行业首选网站 |