| |
铝基复合材料的高速切削 | |
为节省流量,手机版未显示文章中的图片,请点击此处浏览网页版 | |
金属基复合材料(Metal Matrix Composites, MMC)具有比强度和比模量高、耐高温、耐磨损、热膨胀系数小等优异的综合性能,采用金属基复合材料代替钢、铝合金或钛合金材料,可显著起到减重、增速、提高燃油效率、减少废气排放、降低制造维护成本和改善零部件结构工艺性的作用,近年来在航空发动机涡轮叶片、飞机机翼、起落架、导弹尾翼和壳体、惯导平台、电子封装、汽车零部件等方面的应用需求十分迫切[1-2]。
铝基复合材料属于典型的金属基复合材料,主要分为连续纤维增强铝基复合材料和颗粒增强铝金属基复合材料。近年来,颗粒增强铝基复合材料解决了连续纤维增强金属基复合材料制备过程复杂、工艺不成熟、成本过高等问题,生产成本大大降低,国际上已逐步将注意力转移到颗粒增强铝基复合材料的研究上,各国对其需求量逐渐增大。
虽然颗粒增强铝基复合材料的综合性能优越,但其低塑性、在微观上的不均匀性以及超硬陶瓷增强相的加入使其难于切削加工。为了最大限度地减少铝基复合材料切削加工余量,研究人员试图通过近净成形的方法制造铝基复合材料零件,但在较多情况下还是无法满足零件要求,所以有必要对金属基复合材料开展系统的切削加工性研究。自1985年Burn 等[3] 发表第1 篇有关铝基复合材料切削加工的论文开始,至今已有近30 年的时间,期间国内外学者对颗粒增强铝基复合材料的切削开展了大量试验研究。铝基复合材料在切削加工中主要存在刀具耐用度短、表面质量差、生产效率低、加工成本高等问题[4-5],如何开展高效率、低成本的高速切削成为关注的研究热点。
刀具材料的选择及其适应性
在颗粒增强铝基复合材料的切削加工中,由于增强相的硬度通常比高速钢高,甚至比硬质合金及一些陶瓷涂层刀具高,所以这些刀具在切削该材料时刀具磨损率极高。国内外学者使用各种材料刀具对颗粒增强铝基复合材料进行了大量的切削试验研究,结果表明,PCD 刀具由于其高的硬度、耐磨性和低化学亲和性等特点已经成为切削铝基复合材料首选的刀具材料[5-12]。硬质合金刀具在切削铝基复合材料过程中其刀具磨损率较高,如在较高的切削速度(v>350m/min)下切削铝基复合材料时,硬质合金刀具在几十秒内即宣告失效[13-14],一般认为,该类刀具切削铝基复合材料时的切削速度应该限制在300m/min 以内[15-22]。Xu 等[23] 选用细晶粒硬质合金、陶瓷、CBN 和PCD 4种切削性能优良的刀具对2 种典型的铝基复合材料的切削加工性进行了研究,发现加工混杂增强铝基复合材料时,PCD 刀具的磨损阻力最大,是精加工的理想材料,而加工纤维增强铝基复合材料时,细晶粒硬质合金刀具的磨损率低、工件表面完整性好且加工成本最低;同时给出了加工不同金属基复合材料的最佳刀具材料。Tomac 等[14] 利用化学气相沉积的方法制备的TiN、 TiCN 和Al2O3 涂层刀具进行了切削试验研究,研究表明TiN 涂层刀具具有最好的刀具寿命。Manna 和Bhattacharya[15] 利用切削过程中形成的稳定积屑瘤来保护刀具以提高硬质合金刀具的寿命。化学气相淀积(CVD)金刚石涂层刀具的后刀面磨损率高于PCD 刀具[6],D Errico 等发现增加CVD 金刚石刀具的涂层厚度能改善其切削性能,涂层厚500μm 的CVD 金刚石刀具可以与PCD 相媲美[6,24]。与高速钢、TiN 涂层、硬质合金刀具相比,CBN和PCD 刀具切削颗粒增强铝基复合材料时表现出更好的适应性,CBN 在某些条件下可作为PCD 的替换刀具使用[25],但Ibrahim Ciftc[26] 研究表明当切削碳化硅颗粒度为110μm 的SiCp/Al 复合材料时,CBN 刀具切削刃和刀尖出现严重破损,此条件下不适宜选用CBN 刀具进行切削加工。通常条件下,PCD 比PCBN 具有更好的耐磨性、更高的断裂强度和更低的黏着性,从而比PCBN 刀具表现出更好的切削性能[12]。
为了改善表面粗糙度和减小亚表面损伤,在高速切削颗粒增强铝基复合材料的各种刀具材料中,PCD具有比较好的适用性,因而成为首选的刀具材料[9,12,27-28]。
切削力和切削温度
Xu 等[23] 的研究结果表明,4 种刀具材料切削铝基复合材料时,切削力都随切削速度的增加而增大。Manna 等[15] 使用未涂层硬质合金,在切削速度v=20~225m/min 范围内对vol.15%SiCp/Al 进行干车削试验,结果表明,主切削力随切削速度的增大而减小(从220N 变化到135N),随进给量和切深的增大而增大(从125N 变化到170N)。El-Gallab[5] 等研究发现,切削力随切削速度和切深增大而减小,研究认为可能是因为工件材料的软化以及积屑瘤的存在改变了刀具几何角度造成的。Lin 等[9] 使用PCD 刀具在切削速度分别为v=300、500、700m/min 下对SiCp/Al 进行了车削试验。结果表明,随着刀具磨损量的增加,主切削力和进给抗力分别在185N 和90N 以内;相同切削速度条件下,切削力随着进给量的增加而增加;相同进给量条件下,切削力随着切削速度的增加变化很小。Pramanik 等[29] 基于麦钱特模型建立了预测切削铝基复合材料的力学模型,认为切削加工中的力来自切屑变形力、耕犁力、颗粒破碎力3个方面。El-Gallab、Sklad[10] 建立了一个实用的三维刀具模型,用于预测切削SiCp/Al 时刀具所受应力、温度和磨损;结果表明最高切削温度位于切削刃上并且沿前刀面向里温度逐渐降低,随进给速度增加切削温度降低;由于PCD 有更高的导热性,PCD 刀具的切削温度低于TiN、Al2O3 刀具。Chou、Liu[30] 用CVD 金刚石涂层刀具切削SiCp/Al,测量了不同切削条件下的切削温度,得出切削速度是影响切削温度的主要因素,并用ANSYS 进行仿真验证,和试验结果取得了较好的一致性。边卫亮等[31] 在综合考虑铣削速度、每齿进给量、径向切宽和增强相体分比等因素的基础上建立了PCD 刀具高速铣削SiCp/2009Al 复合材料切削力预测模型,该模型对铣削力的预测精度较高。
卢接驰等[32] 采用嵌埋人工热电偶的方法对SiCp/Al 复合材料进行车削试验,研究了各切削参数对前、后刀面的影响,对比了4 种冷却条件(干式切削、压缩空气风冷、油液浇注和MQL)下的切削温度。4 种条件下刀具温度由高到低依次为:干切、风冷、油冷、MQL,干切条件下前刀面温度低于后刀面。葛英飞等[33-34] 采用PCD 刀具高速铣SiCp/2009Al复合材料开展了切削力和切削温度的研究,刀具磨损初期时的动态铣削力,径向力Fy 的峰值已经超过1300N,切削振动较剧烈。研究表明,切削力随着切削速度的增加而减小,切削力随着进给速度的增大或切深的减小而增大;高的增强相体分比和小的增强相尺寸具有较大的切削力;T6 热处理可显著增加切削力;使用切削液可大大减小切削力。研究表明,铣削温度可达580℃以上,切削参数、刀具材料、工件材料和刀具磨损状态对切削温度有显著的影响,而刀具几何形状的影响较微小。切削参数对切削温度影响程度由大到小依次是:切削速度、增强颗粒体分比、径向切宽、每齿进给量。随着切削参数、增强颗粒体分比/ 尺寸,PCD 晶粒度和刀具磨损的增加,切削温度显著升高。在切削参数相同的条件下,高速铣削T6 热处理的铝基复合材料时,切削温度显著下降。
刀具磨损与刀具耐用度
李丹等[35] 使用K10 硬质合金铣刀在干式条件下对Al2024/SiCp 复合材料进行中高速(1000~1800r/min)铣削,试验表明,加工过程中刀具的失效形式主要为后刀面磨损和崩刃2 种形式,增强颗粒尺寸对刀具的失效形式有重要影响。
葛英飞等[36-37] 使用PCD 刀具对SiCp/Al 复合材料进行了高速铣削,结果表明增强颗粒碳化硅的高频刻划和冲击是导致磨粒磨损(图(a))、刀具晶粒脱落(图(b))、崩刃(图( c))、剥落(图( d))的主要机制。PCD 刀具基体微裂纹(图( e))的产生是由于切削高体积分数工件材料,经热处理复合材料或使用很高的切削速度时增强颗粒冲击、切削振动和热冲击的综合作用。干切削时积屑瘤的不断产生和脱落现象使刀具发生粘结磨损(图( f)、(g)),工件材料中的铝元素和铜元素向刀具中有一定程度的扩散,在铜元素的作用下,刀具发生了轻微的石墨化磨损(图( h)、(i))。增强颗粒体积分数是影响刀具磨损的最显著因素,增强颗粒尺寸、工件材料热处理状态、刀具材料晶粒尺寸和冷却条件对刀具磨损有显著影响。在切削参数中切削速度对刀具耐用度的影响最显著,每齿进给量次之。加工表面的粗糙度和质量对刀具磨损有显著的敏感性。 (图片) (图片) | |
电脑版 | 客户端 | 关于我们 |
佳工机电网 - 机电行业首选网站 |