随着半导体技术的发展,国内传统的DIP、SIP集成电路产品逐渐被SOP、QFP、SSOP、TSOP等产品所替代,传统的手动冲切成型模具已无法满足高密度、多引线数IC产品的工艺要求,因此自动冲切成型系统(Trim/Form System)是集成电路后工序冲切成型设备的发展趋势,必将迅速占领中国市场。T/F模具是T/F冲切系统的核心部分,掌握T/F模具的设计方法是十分重要的。
T/F模具设计要点
集成电路后工序冲切成型一般有冲浇口残胶、冲塑、切中筋、预成型、成型、分离等工序,工序组合根据制品特点来选择。下面从排样设计、强度校核、冲裁力计算、结构分析等方面阐述T/F模具的设计要点。
排样设计
根据塑封产品图和客户产能要求,确定工序组合和每次冲切产品个数,排样时根据冲裁步距大小和模具尺寸确定模具数量。如果产品引线框架步距小、整体成型精度要求不高时,可采用一副级进模具,否则采用两副或三副模具组合。两副模具时,一般第一副完成冲浇口残胶、切中筋工序;第二副模具完成预成型、成型、分离等工序,考虑方便下料(入管或入盘),可在两副模具基础上增加第三副分离模具。
凹模强度计算
随着微电子技术的高速发展,集成电路朝着多引线、小间距的方向发展,如QFP176L,引线步距仅0.4mm,在设计时一定要充分考虑凹模强度。
已知(见图1、图2): (图片) (图片)
B——凹模宽度(二面让位部分),mm
H——凹模高度,mm
I——凹模的荷重点,mm
t——引线框架厚度,mm
W——引线框架的切断宽度,mm
δf——引线框架的剪切应力,kg/mm2
则:凹模的刃口部每一处的受力
P=2t•W•δf (kg)
加在凹模载荷点的弯曲扭矩
M=P•I (kg•mm)
凹模的断面系数(图片) 判断标准:满足以下公式(图片) 凹模强度必须同时满足上述判断标准。硬质铝合金材料性能表
(图片)
料弹簧的选择
模具卸料板上的弹簧力与合模时卸料板所受作用力,以及送料导轨所受作用力等因素有关,实验证明,卸料板上的弹簧力约取0.4倍的模具冲裁力,即:
卸料板上的弹簧力=模具冲裁力×0.4
则:每个弹簧载荷=(图片)
因此可以根据弹簧力来选择弹簧,要求弹簧的疲劳强度应达到100万次。
打弯产品回弹角度的估算
图3中θ1、θ2为成型产品图的规定值。(图片)
图3 成型凹模成型R的计算(见图4)
Rc——产品回弹后中心线半径
R1——产品图标注尺寸
Ra——回弹前中心线直径
Rs——打弯凹模成型R
θ1——产品图标注尺寸
θ2——可根据回弹量的计算(图片) (图片)
图4 冲浇口凸模形状设计
QFP类产品浇口处有连筋与塑封体(PKG)连接(见图5),冲浇口时,因连筋处无凹模刃口,如果与引线框同时冲切,则连筋处切不断,容易留在塑封体上,因此凸模应设计为阶梯状,先冲切浇口和连筋,后冲切引线框。(图片) T/F模具采用曲线打弯方式
随着市场对产品的要求越来越高,传统的刚性打弯成型方式会使产品表面镀锡层擦伤严重,不能满足越来越高的产品外观要求,因此T/F模具采用曲线打弯方式,其理想曲线如图6所示。(图片) 曲线打弯结构如图7所示。(图片) 这是CAM打弯方式,其工作原理,是合模时下模支撑块推动上模CAM结构,滚轮开始在CAM曲线上滚动,以支点轴为支点开始旋转,从而使凸模头部打弯管腿成型,这样产品表面擦伤小,弯曲的形状稳定。
总之,T/F模具的设计合理性直接影响产品的品质及稳定性。其设计技术是自动冲切成型系统的关键技术,我们将不断前进、精益求精,设计功能全、通用性强的模具服务于使用者。
3/19/2012
|