因最大的刀具直径常被零件几何形状限制,理论表面粗糙度值只能通过减小刀间距来减小。如果刀间距减小50%,刀具路径将自动增加100%,这意味着精加工时间将增加二倍。为补偿增加的时间,高的进给速率是必须的。高的进给速率要求高的主轴转速来保证恒定的切屑的厚度,同时也需要高的切削速度,相应地温度和刀具磨损将无法避免。
三、高速铣的应用
铝合金的高速铣加工已众所周知,且应用于航空工业已10多年。最近,高速加工主要用在硬材料的车削、模具和铸件的加工。表2中所列的为应用在高速铣中的工件材料:铸铁,CR12MOV (HRC59),3Cr2Mo(HRC30)和4Cr5MoV1Si(HRC46)。GM类别的合金铸铁GM241(HRN210)主要用来加工冲压模,3Cr2Mo模具钢是加工注射模最常用的钢。因含碳量低,通常预先热处理到HRC30时加工,然后在淬火到HRC50~HRC55。在压铸模的的应用中,热锻模具钢4Cr5MoV1Si在HRC46状态时进行精加工。
高速铣研究的目的是测定先进刀具的性能,验证推荐采用的切削速度和进给速率,而研究的焦点在加工时间和表面粗糙度上。因此,铣削试验在四轴高速卧式加工中心进行,如图4所示。试验采用可换的球头铣刀刀片,两个刀片中有一个打磨,可避免刀具径向跳动时刀具磨损的影响。
聚晶立方氮化硼、未涂层的、氮化钛、碳氮化钛和铝氮化钛涂层的几种合金刀片的性能进行了比较。图5为刀片几何参数和刀具规格。含90%立方氮化硼的PCBN 2用来加工四种工件材料。在铸铁上的试验用PCBN 0加工,它含有65%的立方氮化硼。PCBN刀片含有约0.8mm厚的PCBN层,铜焊在硬质合金基体上。加工铸铁、3Cr2Mo和4Cr5MoV1Si时,PCBN刀片的切削刃只有25μm,而加工CR12MOV的刀片切削刃有一20×0.1的倒角和25μm的磨损。(图片)
图5 切削刀具的几何形状和刀具寿命
1. 铸铁的高速铣削加工
在铸铁的加工中,涂层硬质合金、立方氮化硼和氮化硅刀具是最常用的。在最近的研究中,主要调查立方氮化硼的等级和涂层硬质合金。采用涂层合金刀具代替非涂层的合金刀具可提高生产率约25%,而刀具寿命也可延长5倍多。此外,在任一切削速度下,铝氮化钛涂层刀片使用的时间为氮化钛或碳氮化钛涂层刀片的3倍,如图6所示。而聚晶立方氮化硼刀片使用性能优于涂层合金刀片。加工面积到1.6m2时停止试验,经测量PCBN2涂层的刀具最大磨损为60μm,而PCBN 0涂层的刀具最大磨损为85μm。磨损和热疲劳用磨损机械装置识别,立方氮化硼含量高且硬度高的刀具表现出良好的耐磨性。(图片)
图6 珠光体铸铁加工中刀具寿命试验的比较
为研究曲面精加工时切削速度的影响,立方氮化硼刀具以每齿0.5mm的进给速度,以2.8~10m/min的切削速度运行。在此低切削速度(2.8~10m/min)条件下,因切削刃的形式不同表面质量较差,增加切削速度曲面粗糙度降低。一旦切削速度超过300m/min,将产生崩刃。图7为切削速度为750m/min时测量的粗糙度值8.3μm。经试验发现不同的涂层材料(如氮化钛、碳氮化钛和铝氮化钛)和立方氮化硼有相似的结果。
根据研究分析和在模具厂取得的经验可知:精加工铸铁时,立方氮化硼切削刀具的应用最广,因为它们在刀具寿命和工件表面粗糙度方面具有良好性能。具有金属粘接相和立方氮化硼含量高的较硬聚晶立方氮化硼,如PCBN2,其使用性能比具有陶瓷粘接相且立方氮化硼含量低的聚晶立方氮化硼好。刀具寿命和表面质量在采用顺铣和逆铣方式时几乎没有差别。(图片)
图7 精加工铸铁面时切削速度的影响
2. 高强度耐磨塑料模具钢3Cr2Mo的高速铣削
加工3Cr2Mo模具钢时,未涂层的合金刀片性能比其他的切削刀具材料差,甚至只能采用最低的切削速度(V=300m/min),这是因为加速了刀面和凹陷的磨损,如图8所示。可以肯定加工时切削刃上的温度已经超过极限,同时给合金刀具产生一层氧化层。氮化钛涂层合金刀具的性能比铝氮化钛和碳氮化钛涂层刀片好;PCBN 2涂层对刀面的磨损比氮化钛涂层刀具小,但在精加工面积为0.56m2后产生了崩刃。
在同一进给速率、切削速度为500m/min的条件下,试验表明在涂层刀片上产生了磨损。即使切削条件相同,氮化钛涂层刀片比铝氮化钛和碳氮化钛涂层刀片耐用;以很低的速度加工面积为1.27m2后,PCBN 2涂层刀片上产生了磨损,经测量刀片磨损为VB=82μm;以800m/min的切削速度、加工面积为0.375m2后,PCBN 2涂层刀片磨钝了。以500m/min和800m/min两种速度进行试验比较,刀具寿命几乎相同,当采用PCBN 2刀片代替涂层合金刀片时,生产率可以提高30%。
加工铸铁时,PCNB2 涂层刀片获得的表面粗糙度最低。如图9所示,以500m/min和800m/min的切削速度加工,PCNB涂层刀片可获得不大于5μm的粗糙度值Rz。尽管加工低硬度的工件,PCBN2涂层刀具也可用来精加工3Cr2Mo钢,而保持切削速度为300m/min的切削条件将导致刀片崩刃。(图片)
图8 高速加工3Cr2Mo模具钢时不同刀具材料的性能
(图片)
图9 高速加工3Cr2Mo模具钢时不同刀具材料获得的表面粗糙度
3. 高耐磨冷作模具钢Cr12MoV的高速铣削
加工Cr12MoV工具钢(HRC59)时,尽管切削刃采用了0.1mm×20°的倒角来提高刀片的稳定性,但切削距离比加工4Cr5MoV1Si和3Cr2Mo钢短,图10为加工Cr12MoV工具钢时刀具寿命试验的结果。所有的刀片磨损相似。当刀面不断磨损达到VB=100μm时,切削刃的崩刀显示了刀具寿命的极限,此时的最大加工面积为90cm2,加工时的切削速度为150m/min。以Vc=60m/min的切削速度,PCBN刀具使用寿命为氮化钛涂层刀片的两倍。当切削速度增加到Vc=150m/min时,PCBN刀具寿命提高65%。在同样的切削条件下,高于550m/min的切削速度没有能够实现,因为压力过载刀片折断了。这主要由于81μm的切屑厚度太大,刀片上承受的负载超过了它的机械强度。建议减小切屑厚度、切削步距和每齿进给速度。(图片)
图10 Cr12MoV工具钢刀具切削寿命试验
四、小结
最近几年,高速切削技术渐渐用于加工铸铁和硬铝合金,尤其是加工大型覆盖件冲压模、锻模、压铸模和注射模的加工。高速切削的高效应用要求机床系统中的部件都必须先进,主要表现在以下几个方面:
(1)机床 机床结构的刚性要好,提供高速进给的驱动器(快进速度约40m/min,3D轮廓加工速度为10m/min),能够提供0.4m/s2到10m/s2的加速度和减速度。
(2)主轴和刀柄 可提供10000~50000r/min的转速,通过主轴压缩空气或冷却系统控制刀柄和主轴间的轴向间隙不大于0.0002英寸。
(3)控制单元 控制单元应为32或64位RISC处理器,具有高的数据传输率,能够自动加减速。
(4)NC程序策略 可提供高的进给速率和同一切削负载。
(5)刀具材料和涂层材料 能承受高的切削温度,避免磨损和切屑引起的过早崩刃。
(6)可靠性与加工工艺 提高机床的利用率(6000h/y)和无人操作的可靠性,工艺模型有助于对切削条件和刀具寿命之间关系的理解。
(7)工艺建模 借助商用有限元模拟软件,开发基于大塑性变形的分析方法,可对高速切削过程的温度场和应力分布进行模拟分析。
同其他较新的和领先的加工技术相似,高速切削的应用领域将继续扩大。高速切削中产生的高温和应力主要受刀具设计影响。调查表明,采用有限元分析和合理的精度控制,能够预测切削温度和应力。将来,我们期望工艺模型有助于优化刀具设计和消除过早的刀具崩刃,这将扩大高速切削技术的应用领域。
12/16/2004