航空工业铝合金零件的加工对刀具有很高的要求——有高性价比的同时还必须满足高质量加工的需求。由于整体硬质合金刀具具有非常锋利的切削刃和槽型,其在铝合金精加工中切削力小,并且具有容屑空间大、排屑顺畅等优点,因此整体硬质合金刀具逐渐取代了传统的高速钢刀具。
可转位刀片刀具系统可以为铝粗加工和精加工带来潜在的优势,特别是使用25至100mm的中等至大直径刀具时。用于铝合金加工的可转位立铣刀无需重磨,具有更好的安全性、通用性和更高的金属去除率,具有无与伦比的性能。
很多情况下的精加工都不能达到所需的水平。但是现在,山特维克可乐满的CoroMill 790通过全新的切削刃、刀片、刀片座以及夹紧技术可以实现这点。
切削刃上所产生的切削力
当铣削刀具的切削刃切入工件时,猛然撞击引起刀具的振动,产生的切削力主要取决于切屑厚度。当厚度与进给成一定比例,最初诱发的刀具振动会改变后续的切屑厚度。随后,当切削力变化反过来引起加工系统的振动加剧时,厚度可能还会继续增加。切削力的方向和变动幅度在很大程度上决定了振动趋势。此类再生振动也称作颤振,如果不加以抑制,切削力的变化幅度就会增大,使切削后的表面粗糙度下降,产生接刀,甚至导致切削刃和刀具损坏,此外还会对机床主轴产生不利影响。
所以必须在切削开始时就抑制切削力的剧烈的变动从而抑制振动趋势,这也是采用防振刀具的主要原因。 不过在许多情况下,这是通过对刀片结构参数进行优化而实现的。
建立合乎要求的模型(能够准确计算和预测切削力)是开发新刀片槽形的主要依据之一。 随后,高级FEM仿真展示了许多答案,涉及刃线、前角和断屑器的组合式设计以及刀片后刀面上的切削刃新特性的开发与优化。这在很大程度上基于通过测定的模态参数而计算出的振动波形。
刃带的因素
众所周知,在铣削铸铁时,后刀面的磨损会形成一定程度的振动阻尼。后刀面的磨损区域与已加工面摩擦,吸收振动能量,从而导致振幅衰减。从逻辑上讲,该效应也应该能够用于抑制其他类型的铣削振动。该项技术所面临的难点是如何合理地将专门设计的后刀面磨损带用作主后刀面。为了获得正确的阻尼效应,它在刀片上的位置、角度、宽度以及用在切削刃上的范围都需要相当精确,并且与刀片上的其他设计因素也应具有正确的关系。 (图片) 如果这种技术应用得当,起缓冲作用的后刀面刃带可抑制刀具变形量的增加,从而控制切屑厚度与径向切削力。山特维克可乐满已获专利的新型刀片设计的秘密在于:当刀片有偏离工件的趋势时,其刃带将在刀具开始向后弯曲的瞬间与工件上相应形成的已加工曲面接触——从而防止在加工期间刀具振幅的增加,保证刀片持续的稳定效应。该技术成功的关键在于主后角刃带相对于刀片几何构型和刀具直径的尺寸和位置。然后,通过具有切削过程仿真的有限元分析来评估切削合力、切屑形成以及刀片中应力水平的分布。
直径的因素
对于径向切削力的影响来说,小到中等直径刀具刚性不好,较易发生偏斜,而大直径刀具则比较稳定,它们对防振的要求也不一样。进给率不是影响径向切削力的主要因素,在刀具不同的进给之间(通常每齿进给量为0.25mm和0.35mm),径向切削力的大小只有些许的变化。对于典型的直径25mm铝合金立铣刀,其刀片上的刃带呈1°,0.1mm宽,与曲线形切削刃完全匹配。
铝合金是一种具有良好可加工性的材料,其材料单位切削力约为钢的三分之一,熔点为625度。更高的切削速度对功率的要求也会随之提高。事实上,铝合金高速加工时的一个常见问题是需要很大的机床功率,这往往导致单位功耗下金属去除率偏低。因此通常要求机床在高转速下仍能提供尽可能大的输出功率。
从刀具的观点来看,主切削力对功率需求具有决定性影响。降低单位材料去除量所需的功率对铝合金铣削应用有着很明显的正面影响,具体表现在每道工序的生产效率更高,机床加工能力也更强。前角除了决定切削是否轻快之外,也会影响到主切削力。新型的CoroMill 790刀片,通过增大前角同时与刀片几何构型的其余部分相匹配的设计,可尽可能地减少切削力,大大降低功率要求。
轻松切入
在铣削加工时,为了防止初始切削力的急剧增加,切削刃需要尽可能地逐步切入工件(如沿着整体硬质合金立铣刀的螺旋线逐步切入),这将影响径向切削力的大小、方向以及增长率,并由此影响刀具变形以及工件形状误差的大小。
山特维克可乐满发现通过设计新型CoroMill 790刀片槽形,能够以更大的速度和深度进行切削,产生有利的切入延长效应,显著减缓进入时的冲击效应,从而使零件径向铣削面的接刀误差最小化。此外,也可以大大降低轴向切削力,这意味着加工表面上由刀具施加的压力变小,这是在加工薄壁零件时需要考虑的因素。
通过加深刀片前刀面上的断屑槽,降低切削力,优化切屑成形和排屑——飞出并远离切削区和工件表面。这种槽形的刀屑接触面更小,有更低的摩擦力和更平稳的切削作用, 能采用更大的切削深度。
尽管刀片的切削刃看上去因更加锋利和断屑槽更深而显得较脆弱,但实际上其应力水平不会高于相对较钝的切削刃。借助更加系统化的设计方法、更完善精密的计算、仿真和测试手段,可以开发出更加合理的刀片结构,切削性能更加优异,而且足够安全。
9/30/2010
|