| |
激光快速成型技术在精密金属零件快速制造中的应用 | |
为节省流量,手机版未显示文章中的图片,请点击此处浏览网页版 | |
激光快速成型(Laser RapidPrototyping,LRP)技术是近20年来制造技术的一项重大突破。该技术是一种涉及多门学科的新型综合制造技术,其对制造业的影响力可与20 世纪五六十年代的数控机床相比。金属零件快速制造技术代表了RP技术的最新发展方向。国外对RM的理论与工艺研究也相对成熟,而且在近几年已有多家公司推出商品化的设备。而国内主要是对基础工艺的研究,主要研究单位包括西北工业大学、北京航空航天大学、华南理工大学、华中科技大学[5]、南京航空航天大学、清华大学等。RM技术最大的优势是其不需要模具或工具加工,直接获得需求的功能零件。虽然快速制造(RapidManufacturing, RM)技术在材料选择、设计自由性、以及研发成本控制等方面具有很大的竞争优势,但由于RM技术在国内市场上刚刚出现并且关键技术不成熟,还没有被市场普遍接受。
目前,真正能够制造精密金属零件的快速成型技术只有选区激光熔化和选区激光烧结。选区激光烧结(Selective Laser Sintering, SLS)成型方法成型金属零件时, 多采用树脂或低熔点材料包覆的金属粉末作为原材料[8], 通过激光扫描使树脂熔化将金属粉末固结在一起,在成型后经过脱脂、浸渗低熔点金属(如青铜等)来提高致密度。SLS技术成型金属零件工序复杂且零件强度与精度多数情况下仍达不到要求。而选区激光熔化(Selective Laser Melting, SLM)技术是一种极具创新的快速成型技术,能一步加工出具有冶金结合,相对密度接近100%,具有复杂结构、高的尺寸精度的金属零件。
金属零件快速制造技术
金属零件快速制造系统可分为3类:
(1)使用激光照射预先铺展好的金属粉末,即金属零件成型完毕后将完全被粉末覆盖。目前这种方法在市场上、各科研院所采用最多,包括选择性激光烧结(SLS)、直接金属激光烧结成型(Direct Metal LaserSintering, DMLS)、选区激光熔化、Laser Cusing等。
(2)使用激光照射喷嘴输送的粉末流,激光与输送粉末同时工作,也称为激光净成型(Laser EngineeredNet Shaping,LENS)[13]。该方法目前在国内使用比较多,如西北工业大学[14] 研究的激光立体成型、北京航空航天大学[15] 采用此方法成型大型钛合金件。
(3)采用电子束熔化(ElectronBeam Melting, EBM)预先铺展好的金属粉末。此方法与第1 类原理相似,只是采用热源不同,分别为高功率激光和电子束。在瑞典已出现商品化EBM 设备国内清华大学进行了前期的设备开发与工艺研究。
因目前市场上RM设备型号繁多,本课题主要对第一类成型系统进行总结,即主要包括SLM/DMLS和SLS技术。电子束熔化成型技术在原理与成型过程中与上述2种技术类似,也进行了部分说明。
1 SLM/DMLS技术
SLM/DMLS成型过程原理与SLS基本相同。DMLS技术使用材料多为不同金属组成的混合物,各成分在烧结过程中相互补偿,有利于保证制作精度。为了保证金属粉末材料的快速熔化,SLM技术需要高功率密度激光器,光斑聚焦到几十μm到几百μm。SLM技术目前最常使用光束模式优良的光纤激光器的激光功率在50W以上,功率密度达5×106 W/cm2以上。国外研究工作者总结发现,影响SLM成型效果的影响因素达到130多个,而其中13个因素具有决定作用。根据自身经验将影响SLM成型质量的因素分为六大类,包括:材料(成分形貌、粒度分布、流动性、物性等),激光与光路系统(激光模式、波长、功率、光斑直径),扫描特征(扫描速度、扫描方法、层厚、扫描线间距等),外界环境(氧含量、湿度),几何特性(支撑添加、几何特征、空间摆放等),机械因素(粉末铺展平整性、成型缸运动精度、铺粉机构的稳定性等)。考查SLM成型件的指标,主要为致密度、精度、表面粗糙度、零件内部残余应力、强度与硬度6个,其他特殊应用的零件需根据行业要求进行相关指标检测。SLM成型过程的主要缺陷有球化、翘曲变形、裂纹。目前SLM技术所面临的最大挑战为:成型效率、可重复性、可靠性(设备稳定性),这也是RM 行业所面临的最大挑战。
2 选择性激光烧结成型(SLS)
SLS技术分为直接制作金属零件和间接制作金属零件2种。直接制作金属零件采用至少2种以上熔点的金属粉末,通过熔化低熔点成分润湿并填充高熔点结构金属粉末颗粒间隙,将结构材料粘结起来烧结成金属零件的方法。SLS直接制作金属件还可以通过激光熔化金属粉末颗粒的外层,而粉末颗粒的内部并没有熔化的方式,将粉末颗粒通过外层烧结粘结在一起。SLS间接制作金属零件是采用高分子聚合物材料包裹高熔点的金属粉末,激光熔化聚合物材料以将金属粉末粘结起来获得原型件的方式,然后经过焙烧、熔浸低熔点金属液、热等静压等后处理工序提高制件的密度。SLS两种成型金属零件的方法由于都是使用低熔点粉末粘结高熔点粉末,使得SLS制件的力学性能差,特别是延伸率很低,很少能够直接应用于功能零件的制造上。SLS技术的关键是新型材料的研制,适用于SLS 技术的材料范围广泛,该技术本身生产效率高,成型过程易于控制。
3 电子束熔化成型技术(EBM)
EBM与SLM/DMLS系统的差别主要是热源不同,成型原理基本相似。EBM技术成型室必须为高真空,才能保证设备正常工作,这使得EBM 技术整机复杂度提高。因使用电子束作为热源,金属材料对其几乎没有反射,多以能量吸收率大幅提高。在真空环境下,材料熔化后的润湿性也大大提高,增加了熔池之间、层与层之间的冶金结合强度。但是,EBM技术成型还存在如下问题:(1)在真空室抽气过程中粉末容易被气流带走,造成系统污染;(2)在电子束作用下,粉末容易溃散。因此,EBM技术需要将系统预热到>800℃,使得粉末在成型室内预先烧结固化在一起。优点是EBM成型过程效率高,零件变形小,成型过程不需要金属支撑,微观组织致密等。缺点是高预热温度对系统整体结构提出非常高的要求,加工结束后零件需要在真空成型室中冷却相当长一段时间,降低了零件的生产效率。
商品化RM设备及性能
世界范围内,已经有多家成熟的RM设备制造商,包括德国EOS公司(EOSING M270,DMLS 技术)、德国MCP公司(Realizer系列,SLM技术)、Concept laser公司(M Cusing系列,laser Cusing 技术)。瑞典Acram公司的EBM设备也占有重要地位。目前,近年来几乎所有的SLM/DMLS设备都采用光纤激光器,因为光纤激光器几乎免维护、光束质量优良、光电转化效率高等优点使其应用于RM 优势很明显。随着光纤激光器的发展,使用的光纤激光器的功率有逐渐加大的倾向,从初始的50W到目前的主流200W。值得注意的是,concept laser公司的laserCusing技术并没有采用振镜扫描,而使用非主流的x /y轴数控系统,通过伺服电机带动激光头根据零件的轮廓轨迹在x /y方向运动,所以其成型零件范围可以不受振镜扫描范围的限制,其所成型零件效率与尺寸精度可达到SLM/DMLS技术同一水平。
1 各公司商品化设备系列
表1为各公司RM设备及对应的能量源、成型尺寸参数。大部分生产商将设备进行系列化生产,配置不同的能量源与成型零件尺寸以满足不同客户的需求。SLM/DMLS技术要求粉末完全熔化,激光功率密度要求高。商品化的RM设备几乎全部采用光纤激光器,MCP公司与EOS公司已经研发400W的光纤激光器应用以提高成型效率。
2 各公司对应设备成型制造性能
表2是各RM系统使用的典型材料、层厚及成型件的主要性能指标。各设备制造商选用的材料种类相似,主要包括不锈钢、钛合金、工具钢、钴铬合金等,其中EOS公司成型所用材料主要为自主研发。各RM设备的层厚一般设定在50μm左右。层厚太薄,虽然能够提高成型的质量,但降低加工效率,而当层厚加大,将使成型质量变差。比较各生产商的RM设备成型件的质量发现,在致密度、尺寸精度与表面粗糙度等方面,EOS、MCP与Concept laser公司达到同一水平,而Arcam公司EBM成型在尺寸精度与表面粗糙度上相对差一些,主要是因为电子束聚焦光斑比较大而造成。 (图片) (图片) (图片) (图片) | |
电脑版 | 客户端 | 关于我们 |
佳工机电网 - 机电行业首选网站 |