| |
从逐步回归看JMP和Minitab的差异 | |
为节省流量,手机版未显示文章中的图片,请点击此处浏览网页版 | |
逐步回归是回归分析中的重要内容,也是统计建模的主要实现手段之一,在大学的统计课程中是必讲的内容。不过,与简单线性回归相比,逐步回归的概念更为复杂,计算量也更加繁琐。虽然学校办公室的电脑里安装了Minitab软件,计算起来方便了一些,但总觉得不顺手,很多要求都无法实现,讲课的时候学生也不容易理解。所以这两年来我一直在寻找一个理想的统计课程教学软件,并能更好地实现逐步回归的功能。
工夫不负有心人,一个偶然的机会北大有位老师向我推荐了SAS公司的JMP软件, 效果果然不同凡响,试用一段时间就爱不释手了。下面就小心地以软件自带的案例数据为例,比较一下这两个软件吧。
例:初学统计学课程的学生参加了一个简单的试验。每个学生都记录了其身高、体重、性别、是否吸烟、平时活动水平以及静息脉搏。他们全都投掷了硬币,其硬币头像朝上的学生原地跑步一分钟。然后,整个班级的学生再次记录了其脉搏。现在要找出第二次脉搏的最佳预测变量。
先来看看Minitab。
菜单操作的路径是:Stat>Regression>Stepwise Regression,它的自定义功能(如是前向法、后向法、还是混合法,门限值分别是多少等等) 都是通过菜单对话框中一个叫“Methods”的选项来控制的(如图一)。输出结果出现在另一个Session窗口中,包括回归的最终次数(此例中为4次)、每次增减的变量(此例中分别为脉搏1、跑步、性别、活动)、变量的回归系数及其检验统计量(如图二)。
(图片) (图片) (图片) (图片) | |
电脑版 | 客户端 | 关于我们 |
佳工机电网 - 机电行业首选网站 |