| |
结构陶瓷电火花可加工性的模型化预测 | |
为节省流量,手机版未显示文章中的图片,请点击此处浏览网页版 | |
摘要:对常用结构陶瓷材料的电火花可加工性进行了实验研究和模型化分析,为预测特定条件下结构陶瓷材料的电火花可加工性提供了新的分析方法。
关键词:结构陶瓷;电火花加工;可加工性
1引言
电火花加工技术应用于结构陶瓷材料加工,在近20年来得到较快的发展。结构陶瓷材料的固有特性,使其在电火花加工过程中所表现出来的工艺特性完全不同于金属。自80年代以来,许多学者在致力于结构陶瓷电火花加工外特性的研究,不同学者采用不同材料,在不同的条件下得到了不同的工艺数据,分析总结了或相同或相似的工艺规律,但是工艺规律的离散性较大,难以预测对某种结构陶瓷使用电火花加工的可行性。本文围绕这一问题进行实验研究和理论分析,得到了一种较为科学的预测结构陶瓷电火花可加工性的分析方法。
2实验设计中的材料选择
在结构陶瓷中,氧化物、氮化物、碳化物是三大主要系列。氧化铝是可熔化结构陶瓷材料的典型代表,是氧化物系列的结构陶瓷中研究最成熟的一种。它在地壳中的贮藏量丰富,约占地壳总重量的25%,价格低廉,性能优良。据资料记载,仅在山东省淄博市博山区,就蕴藏着上亿吨的优质铝矾土矿。价格便宜和相当成熟的开发研究,使氧化铝基的复合陶瓷材料的应用十分广泛,涉及到冶金、化工、机电、船舶、宇航、轻工等各个领域。可用来制造车刀、铣刀、卡规、各种密封件、拉丝模、拉丝塔轮、滑板、化工设备的阀、泵、宇航器的轴承、火箭鼻锥等。
氮化硅是较低温度分解升化、导热性能(常温)较差、晶界玻璃相较多的一类结构陶瓷材料的典型代表,是氮化物系列的结构陶瓷中研究最活跃、进展最大的一种。具有优越的抗热震性能,摩擦系数小,自润滑能力强,其应用范围超过了氧化铝,在美国的陶瓷燃气轮机计划中,采用氮化硅制作转子、定子和涡形管。无水冷陶瓷发动机中,采用热压氮化硅做活塞顶。在联邦德国的燃气轮机中,用热压 Si3N4做转子、定子,用反应烧结的Si3N4做燃烧器。在日本,用无压烧结的Si3N4制作单缸柴油发动机中的活塞罩、汽缸套、副燃烧室等。日本的五十铃汽车公司的全陶瓷发动机也主要采用Si3N4基结构陶瓷材料。我国研制的高温气门、轴瓦、滚动轴承等陶瓷零件,也是Si3N4基材料的性能最好。
碳化硅(俗称“金刚砂”)是没有熔点、导热性能好、晶界玻璃相少的一类结构陶瓷材料的典型代表,是碳化物系列的结构陶瓷中应用最广泛的一类。碳化硅的硬度仅次于氧化铝,导热性能很好,理论导热系数为400Wm*℃,远大于氧化铝和氮化硅。其在工具业中的应用早为人们所熟知。近几年来,广泛用来制造高温零部件(火箭发动机喷嘴、磁流体发电机的电极等)、耐磨损件(各种机械密封环、拉丝模等)、耐腐蚀件(化工用的泵、阀、喷嘴等),是最有前途的高温材料,其常温强度可维持到1200℃没有明显降低。
3可加工性的预测分析
满足表面完整性的加工效率和电极损耗是衡量某种结构陶瓷材料电火花加工可行性的决定性指标,对结构陶瓷材料来说,峰值电流的持续时间是影响加工效率和电极损耗的关键因素〔1~3〕。
3.1最优脉宽的确定
某种结构陶瓷材料能否在特定电火花加工设备上加工,关键在于能否得到最优脉宽。综合分析各种材料的熔化体积随峰值电流持续时间ts的变化曲线,就可预测高效、低损耗所对应的最优ts值。在ts<40ns时最大熔化体积达到峰值,到200ns时熔化体积已很小。与被加工材料的Vm-ts曲线对比分析,使被加工材料接近而工具材料远离最大熔化体积极值的ts值为最佳值。
如将Al2O3、SiC、Si3N4的Vm-ts曲线分析,三种材料的优化脉宽在0.5~2μs范围内。Al2O3最优脉宽0.5μs,SiC、Si3N4最优脉宽1μs。
3.2工具电极损耗的预测
利用最大熔化体积随ts的变化曲线可预测工具电极损耗,如表1、表2所示的实验与分析结果。表1的研究参数如表3,表2的研究参数如表4。 表1不同脉宽时电极损耗的变化(%) (图片)表2不同峰值电流时电极损耗的变化(%) (图片)表3表1的研究参数 (图片)表4 表2的研究参数 (图片)表5不同脉宽时电极损耗的修正结果(%) (图片)表6不同峰值电流时电极损耗的修正结果(%) (图片) | |
电脑版 | 客户端 | 关于我们 |
佳工机电网 - 机电行业首选网站 |